Abstract View

Author(s): Nilesh R. Suryawanshi1, Karan. A. Patil2, Nikhil. J. Rajput3, H. P. Suryawanshi4, R. A. Ahirrao5, J. I. Pinjari6

Email(s): 1hemant.surya@gmail.com

Address:

    P. G. College of Pharmaceutical Science and Research, Chaupale, Nandurbar, (MS) India.

Published In:   Volume - 3,      Issue - 2,     Year - 2024

DOI: Not Available

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Over time, the use of ChatGPT and artificial intelligence in the pharmaceutical industry has increased, and today, it does not only help us understand the relationship between different formulations and process factors but also saves time and money. In this review, we concentrate on the use of artificial intelligence (AI) in various pharmacological areas, such as drug discovery and development, drug repurposing, increasing pharmaceutical productivity, and clinical trials, among others. This use reduces the workload for humans while also achieving goals more quickly. Additionally, with a focus on the pharmaceutical industry, this study carefully examines the existing state and possible uses of artificial intelligence in the pharmaceutical sector’s wave of the future. Costs might be cut, novel, successful therapies might be offered, but most importantly, artificial intelligence. Academic writing has recently become quite interested in the recently proposed ChatGPT, which will be released in November 2022. It uses a neural network design to deal with natural language and after receiving input texts, can quickly produce intelligent information like people based on a vast quantity of data in many different languages. It is anticipated that a combination of ChatGPT's efficient natural language processing capability with revolutionary drug research will lead to previously unheard-of insights and discoveries, ultimately expediting the creation of new drugs.

Cite this article:
Nilesh R. Suryawanshi, Karan. A. Patil, Nikhil. J. Rajput, H. P. Suryawanshi, R. A. Ahirrao, J. I. Pinjari,Impact of Artificial Intelligence and ChatGPT on Pharmaceutical Industries.IJRPAS, March-April 2024, 3(2): 79-90.


1.      Vyas M., T. S. Asian J Pharmaceutics, [2018]72-76.

2.      M, M.Research gate,[2015].

3.      Davies, N. M. Adapting artificial intelligence into the evolution of pharmaceutical sciences and publishing: Technological darwinism. Pharm Science.[2023]

4.      Fleming, N. How artificial intelligence is changing drug discovery,[2018].

5.      Digital Authority Partners. (2019 November 23). Retrieved from https://www.digitalauthority.me/resources/artificial-intelligence-pharma/

6.      Berg, K. M. (2023, November 23). Using Artificial Intelligence for Drug Discovery. Retrieved from http://www.medcitynews.

7.      Cattell J, C. S. (2013, April). How big data can revolutionize pharmaceutical R and D. Retrieved from https://www.mckinsey.com/industries/life-sciences/our-insights/how-big-data-can-revolutionize-pharmaceutical-r-and-d

8.      Kit-Kay Mak, M. R. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today [2019].

9.      M.et al, V. Artificial intelligence:the beginning of a new era in pharmacy. Scopus, [2018]72-76.

10.  Matthew A Sellwood1, M. A. Artificial intelligence in drug discovery. Future Med. Chem, [2018]

11.  Artificial intelligence in drug. (2021). Retrieved from https://www.bing.com/images/search?view=detailv2&insightstoken=bcid_qCoBHe9jOBwG1g*ccid_KgEd72M4*cp_DB17948D748D1E5BEBC343CA9E75D2E6&form=WCVSID&iss=SBIUPLOADGET&darkschemeovr=1&selectedindex=4&id=614416574&ccid=KgEd72M4&exph=270&expw=836&vt=2&simid=60798

12.  Zhu, H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annual Review of Pharmacology and Toxicology , [2020] 573-589.

13.  Ciallella, H. a. Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity. Chem. Res. Toxicol., [2019] 536–547.

14.  Role of artificial intelligence (AI) in drug discovery.[2021]Retrieved from https://www.bing.com/images/search?view=detailv2&insightstoken=bcid_qHAnI9-kLRwGdw*ccid_cCcj36Qt*cp_3B33FD597D5DBFC04F8203D108B11C9B&form=WCVSID&iss=SBIUPLOADGET&darkschemeovr=1&selectedindex=0&id=-313176489&ccid=cCcj36Qt&exph=351&expw=740&vt=2&simid=6080

15.  Automatic Chemical Design Using a Data-Driven Continuous. ACS Central Sci., [2018] 268–276.

16.  Valavanidis, P. A. Artificial Intelligence (AI) Applications.Τhe most important technology we ever develop and we must ensure it . Research Gate.[2023].

17.  Debleena Paul, G. S. Artificial intelligence in drug. Drug Discovery Today.[2021]

18.  Aydın, Ö., & Karaarslan, E. J. OpenAI ChatGPT generated literature review: Digital [2022].

19.  Jiao, W., Wang, W., Huang, J.-t., Wang, X., & Tu, Z. J. Is ChatGPT a good translator? A preliminary study[2023].

20.  Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O., . . . Neyts, J. J. Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. [2021]12 (7), 1793-1802.

21.  Madhyastha, H., Madhyastha, R., Thakur, A., Kentaro, S., Dev, A., Singh, S., . . . Biointerfaces, S. B. c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism. [2020] 194, 111211.

22.  Sharma, G., Song, L. F., & Merz, K. M. Modeling, Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2.[2022]

23.  Thakur, A., Mandal, S. C., Banerjee, S. J., & Studies, M. Compounds of natural origin and acupuncture for the treatment of diseases caused by estrogen deficiency. [2016] 109-117.

24.  Hay, M. e. Clinical development success rates for investigational drugs. Nat.Biotechnology, [2014] 40-51.

25.  Harrer, S. e. Artificial intelligence for clinical trial design. . Trends Pharmacological science, [2019]577-551.

26.  Kamal H., L. V. Front Neurol. [2018]

27.  Tariq, A. G.Evaluating the Potential of Artificial Intelligence in Orthopedic Surgery for Value-based Healthcare. . International Journal of Multidisciplinary Sciences and Arts, [2023] 27-36.

28.  Mak, K.-K. a. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today, [2019]773–780.

29.  Asselah, T. D. COVID-19:Discovery, diagnostics and drug development. J. Hepatol, [2021] 168–184.

30.  Azodi, C. B. Opening the black box: Interpretable machine learning for geneticists. Trends Genet, [2020] 442–455.

31.  Feng R., B. M. (2018). 358-362.

32.  Bajorath J, K. S.  The Future Is Now: Artificial Intelligence in Drug Discovery. Journal of Medicinal Chemistry,[2019] 5249-5249. .

33.  Meziane, F. e. Intelligent systems in manufacturing: current developments and future prospects. [2000] 218-238.

34.  Steiner, S. e.Organic synthesis in a modular robotic system driven by a chemical programming language.[2019]

35.  Faure, A. e.  Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur. J. Pharm. Biopharm., [2001] 269-277.

36.  Landin, M.  Artificial intelligence tools for scaling up of high shear wet granulation process. J. Pharm. Sci. , [2017] 273–277.

37.  Das, M. a. ANN in pharmaceutical product and process development. In Artificial Neural Network for Drug Design, Delivery and Disposition. Elsevier, [2016] 277–293.

38.  kraft, D. (n.d.). System and methods for the production of personalized drug products.

39.  Gams, M. e. Integrating artificial and human intelligence into tablet. AAPS PharmSciTech , [2014] 1447–1453.

40.  Aksu, B. e. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm. Dev. Technol. , [2013] 236–245.

41.  Dragoi, E. a. On The use of artificial neutral networks to monitor a pharmaceutical freez-drying process. Drying Technology, [2013]72-81.

42.  Available online. (2022, December 6)

43.  Mag.k.k, P. M. Artifial Inteligence in drug development: Present Status and future Prospects. Drug discovery Today, [2019]773-80.

Related Images:



Recent Images



RPHPLC Method for Concurrent Determination of Haloperidol and Trihexyphenidyl in API and Combined Tablet Formulations
A review on HPLC Methods for Estimation of Travoprost  in Combined and Single Pharmaceutical formulation and Bulk
To Study number and types of refund Medicines from different Wards of Hospital to the In-Patient Pharmacies
A Novel RP-HPLC Analytical Method Development and Validation of Berberine In Bulk and Polyherbal Formulation
Formulation and Evaluation of A Polyherbal Cough Syrup with Potential Anti-Obesity Effects
Formulation and evaluation of Herbal Face Cream
Formulation and In-vitro Evaluation of Cold Cream
Prevalence study of Diabetes Mellitus
Design and Optimization of Extended-Release Mini-Tablets of Metoprolol Succinate Using Okra Stalk Powder and HPMC K100 M as Release Modifiers
Comprehensive review on Alfuzosin quantification: Analytical techniques and the evolution of AQbD in method development

Tags


Recomonded Articles:

Author(s): Hasanen Pinjari; Rehan Deshmukh; Khan Faizan; Dr. Gulam Javed.

DOI:         Access: Open Access Read More

Author(s): Shaikh Aminoddin Raisoddin; Shifa Maniya; Sayeeda Begum; Naziya Shaikh.

DOI:         Access: Open Access Read More

Author(s): Shah Kaunen; Pathan Ahemad; Shah Sahil; Khatik Ali; Abdul Kashif; Abu Asim Azmi

DOI:         Access: Open Access Read More

Author(s): Magendran Rajendiran1*, Muruganand R2, Abhisek Kumar Sinha2, Mohamed Raashith M S2, Jasitha Begam M2, Usharani G2, Dhivyari D2, Deepika T2

DOI: https://doi.org/10.71431/IJRPAS.2025.4413         Access: Open Access Read More

Author(s): Girisha Chaudhari;Sofiya Morris; Dr. Ashish Jain

DOI:         Access: Open Access Read More

Author(s): Devadatta Pandurang Hatim; Sachinkumar V. Patil; Sachin Mali

DOI:         Access: Open Access Read More

Author(s): Mohammad Zaid*; Prof. Imran Kalam; Dr. Quazi Majaz

DOI:         Access: Open Access Read More

Author(s): Mr. Shrinivas Kapale; Mr. Gopal Lohiya; Dr.Kranti Satpute

DOI:         Access: Open Access Read More

Author(s): S. Sathya, Karthiga. D, Lokesh. S, Sabari Manikandan, V. R. Rajeswari

DOI: https://doi.org/10.71431/IJRPAS.2025.4105         Access: Open Access Read More

Author(s): Quazi Kamil Hafiz Anees Ahemad; Dr. Majaz Quazi; Quazi Wasil; Dr. G. J. Khan

DOI:         Access: Open Access Read More

Author(s): Mansoori Safwan Salim; Prof. Rehan Deshmuhk; Dr. G.J. Khan; Shaikh Amaan; Sayyed Ahamad Sayyed Kaleem; Hamza Iliyas Amliwala

DOI:         Access: Open Access Read More

Author(s): Shruti Khot; Rutuja Sawant; Prerana Pawar; Rutuja Pandhare; Swati Vajarde

DOI:         Access: Open Access Read More

Author(s): Nilesh R. Suryawanshi; Karan. A. Patil; Nikhil. J. Rajput; H. P. Suryawanshi; R. A. Ahirrao; J. I. Pinjari

DOI:         Access: Open Access Read More

Author(s): Kazi Kaif Aarefoddin; Mohommad Altamash*; Abdullah Danish

DOI: https://doi.org/10.71431/IJRPAS.2025.4313         Access: Open Access Read More

Author(s): Shaikh Aklakh Gafar1*; Dr. M.H.G Dehghan1;Khan Juber Kadir2

DOI:         Access: Open Access Read More

Author(s): Museb shaikh Mukhtar; Khalifa Mahmadasif Y; Pathan Ayyaj Magbul; Shaikh Faisal; Shaikh Aman; MD Moiz, Shaikh Arbaj.

DOI:         Access: Open Access Read More

Author(s): Baburao Mohite; Manisha Mane; Sarika Suryavanshi; Shrirang Kharmate; Pranali Patil; Anand Gadad.

DOI:         Access: Open Access Read More

Author(s): Momin Zain; Shaikh Arbaz; Shaikh Adnan; Rehan Deshmukh

DOI:         Access: Open Access Read More

Author(s): Patel Azba Siddiq*; Jain Samiksha Kirtikumar; Patel Samiya Mustak Ali

DOI: https://doi.org/10.71431/IJRPAS.2025.4210         Access: Open Access Read More