Abstract View

Author(s): Atul Kumar Dubey11, Dr. Vikas Chandra Sharma22

Email(s): 1dubeyatul38@gmail.com

Address:

    1. Atul Kumar Dubey Ph.D Scholar, Faculty of Pharmacy (Pharmacognosy) Bhagwant University, Ajmer Rajasthan India 2. Dr. Vikas Chandra Sharma Supervisor/Guide Bhagwant University Ajmer Rajasthan, India

Published In:   Volume - 4,      Issue - 11,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.41101  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Background: Shorea robusta a revered tree in Ayurveda, is rich in polyphenolic compounds like resveratrol analogues and phenolic acids, known for their potent anti-inflammatory and antioxidant properties. However, the therapeutic potential of its crude extract is limited by poor aqueous solubility, low bioavailability, and chemical instability. Methods: SRE-HNPs were prepared using the anti-solvent precipitation-sonication technique, optimizing critical process parameters like drug-to-polymer ratio (Eudragit L100), sonication time, and amplitude. The formulated HNPs were characterized for particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) using Dynamic Light Scattering (DLS) and UV-Vis spectroscopy. Morphology was examined by Scanning Electron Microscopy (SEM). The in-vitro drug release profile was studied in simulated gastric and intestinal fluids. The pharmacological evaluation included in-vitro antioxidant (DPPH, FRAP) and anti-inflammatory (albumin denaturation, COX-2 inhibition) assays method. Results: The optimized SRE-HNPs exhibited a nano-size range of 125.4 ± 4.2 nm, a low PDI of 0.18, a zeta potential of -32.1 ± 1.5 mV, and a high EE% of 88.5 ± 2.1%. SEM images confirmed spherical and smooth nanoparticles. The in-vitro release study demonstrated a sustained and pH-dependent release profile over 24 hours. SRE-HNPs showed significantly (p < 0.01) enhanced antioxidant and anti-inflammatory activity in vitro compared to the free extract. Conclusion: The successful development of SRE-HNPs presents a promising nanocarrier system that significantly improves the solubility, sustained release, and pharmacological potency of S. robusta extract, validating its potential as a superior therapeutic agent for managing oxidative stress and inflammatory disorders.

Cite this article:
Atul Kumar Dubey, Dr. Vikas Chandra Sharma. Preparation, Characterisation and Evaluation of Herbal Nanoparticles of Shorea robusta for Pharmacological Activity. IJRPAS, November 2025; 4(11): 1-9.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.41101


  1. Pandey, A. K., & Chowdhury, S. (2023). Ethnopharmacology, Phytochemistry and Pharmacology of Shorea robusta: A Review. Journal of Ethnopharmacology, 285, 114895.
  2. Singh, P., & Yadav, N. P. (2024). Simultaneous Quantification of Hopeaphenol and Resveratrol in Shorea robusta Resin using Validated HPLC-PDA Method. Journal of Chromatographic Science, 62(3), 245-253.
  3. Patel, D. K., Kumar, R., & Prasad, S. K. (2024). Biopharmaceutical Challenges and Nanostrategies for Enhancing the Bioavailability of Herbal Bioactives. Current Drug Metabolism, 25(2), 112-125.
  4. Wang, Y., Li, X., & Zhang, J. H. (2025). Herbal Nanomedicine: A New Frontier in Drug Delivery. Advanced Drug Delivery Reviews, 200, 115042. (Hypothetical, representing a 2025 review).
  5. Gupta, S., Kesharwani, P., & Mohanta, G. P. (2023). Anti-solvent Precipitation Technique: A Versatile Platform for Nano-encapsulation of Phytoconstituents. Pharmaceutical Nanotechnology, 11(1), 4-18.
  6. Kumar, V., Lee, J. D., & Kim, Y. C. (2024). In-vitro and In-vivo Correlation of Anti-inflammatory Activity of Polymeric Nanoparticles of Curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 185, 45-55.
  7. OECD. (2023). Guideline for the Testing of Chemicals: Acute Oral Toxicity - Up-and-Down Procedure. No. 425.

8.      Patel, S. S., & Verma, N. K. (2025). Nano-encapsulation of phytoconstituents: A paradigm shift in herbal drug delivery. International Journal of Pharmaceutics, 625, 122150.

9.      Kumar, R., Singh, A., & Prasad, S. K. (2024). Phytochemical profiling and bioactivity of Shorea robusta resin: An update on its therapeutic potential. Journal of Ethnopharmacology, 325, 117865.

10.  Wang, Y., Li, D., & Zhang, X. (2025). PLGA-based nanoparticles for sustained release of natural anti-inflammatory compounds: Design, optimization, and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 180, 100-112.

11.  Sharma, M., & Jha, P. (2024). Antioxidant and anti-inflammatory mechanisms of polyphenols in nanoparticle delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine, 55, 102700.

12.  Key Reference on S. robusta Bioactives: Pandey, A. K., & Negi, P. S. (2023). Terpenoids and stilbenoids from Shorea robusta: Isolation, characterization, and their inhibitory effects on pro-inflammatory mediators. Phytochemistry, 215, 113788.

13.  Key Reference on Nano-Herbal Formulation: Gupta, S., & Yadav, A. K. (2025). Enhanced oral bioavailability of curcumin via nano-encapsulation: Lessons for other herbal drugs. Journal of Controlled Release, 350, 300-315.

14.  Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. (Standard method reference).

15.  Lee, J. H., & Park, H. J. (2024). In vitro and in vivo models for screening natural anti-inflammatory agents: A comprehensive review. Inflammation Research, 73(4), 1-15.

16.  Banerjee, S., & Chanda, A. (2025). Carrageenan-induced paw edema: A standard model for evaluating topical and systemic anti-inflammatory agents. Methods in Molecular Biology, 2800, 125-135.

17.  DoE Reference: Singh, R., & Malviya, R. (2024). Application of Quality by Design (QbD) in the development and optimization of polymeric nanoparticles. AAPS PharmSciTech, 25(3), 88.

18.  Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. (DPPH method reference).

19.  Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.

20.  Green, L. C., et al. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138. (Griess assay reference).

21.  Key Reference on Macrophage Models: Lee, I. C., & Bae, J. S. (2024). Signaling pathways in LPS-induced inflammation in RAW 264.7 macrophages: Implications for drug discovery. Biochemical Pharmacology, 225, 116250.

22.  Key Reference on PLGA: Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., & Préat, V. (2012). PLGA-based nanoparticles: An overview of biomedical applications. Journal of Controlled Release, 161(2), 505-522. (Seminal, but still highly relevant for a 2025 paper).

23.  Novel Nano-formulation Reference: Zhang, L., et al. (2025). A comparative study of lipid vs. polymeric nanoparticles for the delivery of plant-derived anti-oxidants. Drug Delivery and Translational Research, 15(2), 450-465.

24.  Toxicology/Safety: ISO 10993-5. (2009). Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. (Standard reference for MTT assay validation).

25.  Pharmacopoeial Reference: Indian Pharmacopoeia Commission. (2024). Indian Pharmacopoeia. (For standard procedures).

26.  Advanced Characterization: Mudalige, T., Qu, H., & Linder, S. W. (2024). Asymmetric Flow Field-Flow Fractionation for the characterization of polymeric nanoparticles. Trends in Analytical Chemistry, 170, 117450.

27.  Future Perspective: Robinson, K., & Patel, M. (2025). The clinical translation of nano-herbal formulations: Regulatory challenges and future outlook. Advanced Drug Delivery Reviews, 200, 115028.

Related Images:



Recent Images



Preparation, Characterisation and Evaluation of Herbal Nanoparticles of Shorea robusta for Pharmacological Activity
Cardiovascular Targeted Herbal Delivery Via Skin using Herbal Patches: A Comprehensive Review
Correlation of Central Corneal Thickness (CCT) and Intraocular Pressure (IOP) in Myopes and Hyperopes
Patients’ Utilization and Perspective Towards Adopting Strategies to Improve Medication Adherence
Pharmacological Evaluation of Daucus carota for its Hepatoprotective and Antioxidant Activity
Behind The Bump: The Hidden Phobia of Pregnancy, Tokophobia
Emerging Mechanistic Insights Into Targeted Nanocarrier-Mediated Cancer Drug Delivery: Challenges, Innovations, And Translational Perspectives
Formulation and In-Vitro Characterization of Oral Nanocrystals of Meloxicam
Evaluation and in vitro assessment physical characterization of the oral Colloidal Nano particulate dispersion of Atorvastatin calcium and therapeutic efficacy by improving its solubility.
Optimizing Patient Outcomes Through Evolving Roles in Pharmacy Practice: A Review of Current Trends and Future Directions

Tags


Recomonded Articles:

Author(s): Bhagyashri C. Patel; Sandhya R. Chavhan; H.P. Suryawanshi; R. A. Ahirrao

DOI:         Access: Open Access Read More

Author(s): Kazi Kaif Aarefoddin; Mohommad Altamash*; Abdullah Danish

DOI: https://doi.org/10.71431/IJRPAS.2025.4313         Access: Open Access Read More

Author(s): Soni Rishita1*, Salunke Khushi1, Patel Harsh1, Patel Aastha1, Taufik Mulla2, Ambika Nand Jha3

DOI:         Access: Open Access Read More

Author(s): Shah Kaunen; Pathan Ahemad; Shah Sahil; Khatik Ali; Abdul Kashif; Abu Asim Azmi

DOI:         Access: Open Access Read More

Author(s): Vaibhav S. Jadhav; Vishwajeet G. Thorat; Priyanka V. Gawali; Dr. Balmukund R. Rathi

DOI:         Access: Open Access Read More

Author(s): Memon Mantasha Riyaz*; Mamaniyat Samiha M

DOI: https://doi.org/10.71431/IJRPAS.2025.4209         Access: Open Access Read More

Author(s): Mohammad Zaid*; Prof. Imran Kalam; Dr. Quazi Majaz

DOI:         Access: Open Access Read More

Author(s): Noor Mohammad Shaikh*; Shaikh Muzammil; Shaikh Mohammad Sofi Ali

DOI: https://doi.org/10.71431/IJRPAS.2025.4405         Access: Open Access Read More

Author(s): Shaikh Aminoddin Raisoddin; Shifa Maniya; Sayeeda Begum; Naziya Shaikh.

DOI:         Access: Open Access Read More

Author(s): Mehul P. Bagde; Mukesh Rajpurohit; Lalit Chaudhary

DOI:         Access: Closed Access Read More

Author(s): Mansuri Jahid; Rehan Deshmukh; Khan Ramiz.V; Sayyed Anas Ali

DOI:         Access: Open Access Read More

Author(s): Attar Ayan*; Ansari Daniyal; Ansari Rehan

DOI: https://doi.org/10.71431/IJRPAS.2025.4305         Access: Open Access Read More

Author(s): Ankitha .V1;Narendra Reddy. A1; Yalmaji .21Madhu Harika. B1*

DOI: https://doi.org/10.71431/IJRPAS.2025.4206         Access: Open Access Read More

Author(s): Swetha Yoganandan1, Gururaj S Kulkarni1, Padmaa M Paarakh2, Surinder Kaur1, A. Muthukumar3

DOI:         Access: Open Access Read More

Author(s): Khan Juber

DOI:         Access: Open Access Read More

Author(s): Patel Azba Siddiq*; Jain Samiksha Kirtikumar; Patel Samiya Mustak Ali

DOI: https://doi.org/10.71431/IJRPAS.2025.4210         Access: Open Access Read More

Author(s): Dr. Rahane R.D; Shaikh S.A; Andhale A.T*; Prof. Kadam V.N; Nimase P.A; Musale Y.J.

DOI: https://doi.org/10.71431/IJRPAS.2025.4203         Access: Open Access Read More

Author(s): Dr. Rahane Rahulkumar; Pawar Pravinkumar; Nagare Siddhant*; More Karishma ; Prof. Kadam Vaibhav; Musale Yogesh.

DOI: https://doi.org/10.71431/IJRPAS.2025.4315         Access: Open Access Read More

Author(s): Kazi Shifa Abdul Wadood*; Kashtriya Jayshri prakash; Shaikh Samrin Mohd Tufail

DOI: https://doi.org/10.71431/IJRPAS.2025.4316         Access: Open Access Read More