Abstract View

Author(s): Dnyaneshwari A. Gunjal*1, Chaitali R. Rajput2, Vaishnavi P. Wani3, Madhuri S. Pardeshi4

Email(s): 1dnyaneshwarigunjal48@gmail.com

Address:

    Department of Pharmaceutics Sumantai Institute of Pharmacy,Bambrud kh.Pachora, Dist. Jalgaon, Maharashtra , India

Published In:   Volume - 4,      Issue - 2,     Year - 2025

DOI: https://doi.org/10.71431/IJRPAS.2025.4201  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Over the past decade, artificial intelligence (AI) has played a significant role in solving a number of medical issues, including cancer. One area of IA that stands out is deep learning (DL), which is distinguished by its ability to do automatic feature extraction and has significant strength in processing and analyzing large amounts of complex data. Thanks to a wealth of medical data and cutting-edge computer technologies, IA—particularly deep learning—has found use in various areas of cancer research and holds promise for enhancing cancer diagnosis and treatment. These applications cover a wide range, including early cancer detection, diagnostics, classification and grading, molecular tumor characterization, anticipating treatment outcomes and patient reactions, developing a customized treatment plan, automating radiotherapy workflow, developing novel anti-cancer medications, and preliminary clinical trials. In this review, we introduced the general idea behind IA, outlined the primary areas in which it is used to diagnose and treat cancer, and discussed its future prospects as well as its ongoing challenges. By increasing the use of IA in clinical settings, we can anticipate the emergence of cancer treatments driven by artificial intelligence.

Cite this article:
Dnyaneshwari A. Gunjal, Chaitali R. Rajput, Vaishnavi P. Wani, Madhuri S. Pardeshi. Artificial Intelligence for Assisting Cancer Diagnosis and Treatment in The Era of Precision Medicine. IJRPAS, Feb 2025; 4 (2): 1-12.DOI: https://doi.org/https://doi.org/10.71431/IJRPAS.2025.4201


1.   McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine. 2006;27(4):12. [Google Scholar]

2.        Yasser E‐M, Honavar V, Hall A. Artificial Intelligence Research Laboratory. 2005.

3.        Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcareNat Biomed Eng. 2018;2(10):719–31. [PubMed] [Google Scholar]

4.        Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020CA Cancer J Clin. 2020;70(1):7–30. [PubMed] [Google Scholar]

5.        Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicineNat Biotechnol. 2018;36(9):829–38. [PubMed] [Google Scholar]

6.        Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapyComput Biol Med. 2018;98:126–46. [PubMed] [Google Scholar]

7.        Samuel A. Some studies in machine learning using the game of checkersIBMJ Res Dev. 1959;3:210–29. [Google Scholar]

8.        Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist‐level classification of skin cancer with deep neural networksNature. 2017;542(7639):115–8. [PMC free article] [PubMed] [Google Scholar]

9.        Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networksCommun ACM. 2017;60(6):84–90. [Google Scholar]

10.    Bi WL, Hosni A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applicationsCA Cancer J Clin. 2019;69(2):127–57. [PMC free article] [PubMed] [Google Scholar]

11.    Abele DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung‐cancer mortality with low‐dose computed tomographic screeningN Engl J Med. 2011;365(5):395–409. [PMC free article] [PubMed] [Google Scholar]

12.    Byers T, Wender RC, Jemal A, Baskies AM, Ward EE, Brawley OW. The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: Results and reflectionsCA Cancer J Clin. 2016;66(5):359–69. [PubMed] [Google Scholar]

13.    Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and deathN Engl J Med. 2014;370(14):1298–306. [PMC free article] [PubMed] [Google Scholar]

14.    Wentzensen N, Lahrmann B, Clarke MA, Kinney W, Tokugawa D, Poitras N, et al. Accuracy and efficiency of deep‐learning‐based automation of dual stain cytology in cervical cancer screeningJ Natl Cancer Inst. 2021;113(1):72–9. [PMC free article] [PubMed] [Google Scholar]

15.    Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real‐time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled studyGut. 2019;68(10):1813–9. [PMC free article] [PubMed] [Google Scholar]

16.    Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, et al. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomasCancer Res. 2018;78(24):6881–9. [PubMed] [Google Scholar]

17.    Kang G, Liu K, Hou B, Zhang N. 3D multi‐view convolutional neural networks for lung nodule classificationPLoS One. 2017;12(11):e0188290. [PMC free article] [PubMed] [Google Scholar]

18.    Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs C, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learningSci Rep. 2017;7:46479. [PMC free article] [PubMed] [Google Scholar]

19.    Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End‐to‐end lung cancer screening with three‐dimensional deep learning on low‐dose chest computed tomographyNat Med. 2019;25(6):954–61. [PubMed] [Google Scholar]

20.    Swiderski B, Kurek J, Osowski S, Kruk M, Barhoumi W, editors. Deep learning and non‐negative matrix factorization in recognition of mammogramsEighth International Conference on Graphic and Image Processing (ICGIP 2016); 2017: International Society for Optics and Photonics. [Google Scholar]

Related Images:



Recent Images



Neurological Complications among Pregnant and Post Partum Mothers in a Private Hospital, Yogyakarta, Indonesia
Review on Regulatory Affairs in Pharmaceutical Industry
Cucumber and Mint Soap: Preparation and Evaluation
Topical Delivery in Cosmetics: Enhancing Penetration and Bioavailability
Formulation and Evaluation of Polyherbal Soap
Gelatin: A Widely Used Pharmaceutical Excipient
Therapeutic insights into Saroglitazar: a dual PPAR- α/γ agonist targeting diabetic dyslipidaemia and NAFLD
A Comprehensive Review on Dyslipidemia and Obesity: Pathophysiology, Clinical Implications and Management Approaches
Antidiabetic Herbs and Polyherbal Antidiabetic Formulations –An Overview
Review on Clinical Research and Clinical Trials

Tags